### Approximation theory

### Daghestan Electronic Mathematical Reports: Issue 7 (2017)

# Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs

### UDK: 517.538

### Pages: 1 - 15

### DOI: 10.31029/demr.7.1

We consider systems of functions ${\cal X}_{r,n}(x)$ $(r=1,2,\ldots, n=0,1,\ldots)$, generated by Haar functions $\chi_{n}(x)$ $(n=1,2,\ldots)$, that form the Sobolev orthonormal system with respect to the scalar product of the following form $<f,g>=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{1}f^{(r)}(t)g^{(r)}(x)dx$.
It is shown that the Fourier series and sums with respect to the system ${\cal X}_{r,n}(x)$ $(n=0,1,\ldots)$ are a convenient and very effective tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).

**Keywords: **
Systems of functions orthogonal in the sense of Sobolev, Haar functions, the Cauchy problem for an ODE.