Теория приближений

Дагестанские Электронные Математические Известия, Выпуск №9 (2018)


Алгоритм численной реализации полиномов по функциям, ортогональным по Соболеву и порожденным косинусами

УДК: 519.688

Страницы: 1 - 6


Разработан алгоритм, основанный на быстром дискретном преобразовании Фурье для численной реализации на сетке \{t_j=\frac{j}{N}\}_{j=0}^{N-1} полиномов по функциям \xi_{1,0}(t)=1,\ \xi_{1,1}(t)=t,\ \xi_{1,n+1}(t)=\frac{\sqrt{2}}{\pi n}\sin(\pi nt),\ n=1,2,\ldots, ортогональным по Соболеву относительно скалярного произведения \langle f, g\rangle=f(0)g(0)+\int_0^1f, порожденным косинусами \xi_0(x)=1,\ \{\xi_n(t)=\sqrt{2}\cos(\pi nt)\}_{n=1}^\infty.


Ключевые слова: быстрое преобразование Фурье, дискретное синус-преобразование, скалярное произведение типа Соболева, ортогональные по Соболеву функции.




В содержание выпуска

Скачать полный текст