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On some new sharp embedding theorems in

area Nevanlinna spaces and related problems

We provide some new sharp embedding theorems for ana-
lytic area Nevanlinna spaces in the unit disk extending some
previously known assertions in various directions.
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óòâåðæäåíèÿ â ðàçëè÷íûõ íàïðàâëåíèÿõ.
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1. Introduction

Let Ω be a bounded pseudoconvex domain in Cn. Let also TΩ be a
tubular domain over symmetric cone in Cn. Let further µ(µ̃) be positive
Borel measure on TΩ (on Ω). Let also △α, α ≥ 0, be determinant function
on TΩ, and δα(w) = distα(w, ∂Ω), α > −1. Let dv (dV ) be the normalized

Lebesgues measure on TΩ (on Ω). B(z, r) (B̃(z, r)) z ∈ Ω (z ∈ TΩ) be
Bergman or Kobayashi ball in tubular domains over symmetric cones or
pseudoconvex bounded domains in Cn, (see [1], [2]). Let Np

α be the classical
area Nevanlinna space of TΩ (on Ω). Then we can state the following based
on recent techniques developed in recent papers [1], [2].

Namely it is easy to show that if for some α̃, α̃ > 0,

µ(B(z, r)) ≤ c0(△α̃(Imz)), r > 0, z ∈ TΩ.
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Then∫
TΩ

(
log+ |f(z)|

)p
dµ(z) ≤ c∥f∥p

Nϱ
α(TΩ)

= c

∫
TΩ

(log+ |f(w)|)p(△α(Imw))dv(z),

for α > −1 and for 1 ≤ p < ∞, and also∫
Ω

(log+ |f(z)|)pdµ̃(z) ≤ c̃∥f∥p
Np

α(Ω)
= c̃

∫
Ω

(
log+ |f(w)|

)p
δα(w)dV (w)

for 1 ≤ p < ∞, α > −1. If the following condition holds µ̃(B̃(z, r)) ≤
c2(δ

α̃(z)), z ∈ Ω, r > 0, α > 0 for some α̃ and for some positive constants c,
c0, c̃, c2. Same type results can be provided in the polydisk and in bounded
symmetric domains based on the same known technique (see, for example,
[17] for unit ball case). These type of conditions on measure will be called
Carleson type conditions.

Throughout the paper, we write C or c (with or without lower indexes) to
denote a positive constant which might be di�erent at each occurrence (even
in a chain of inequalities), but is independent of the functions or variables
being discussed.

Let w be a function from a set S of all positive growing functions, w ∈
L1(0, 1) such that there are two numbers mw > 0, Mw > 0 and a number
qw ∈ (0, 1) such that

mw ≤ w(λτ)

w(τ)
< Mw, τ ∈ (0, 1), λ ∈ [qw, 1],

(this condition will be used in proofs of 2◦ ⇒ 1◦ in theorems 1 and 2). Let
w ∈ S, then there are measurable functions ε(x), q(x) so that

w(x) = exp

{
q(x) +

∫ 1

x

ε(u)

u
du

}
, x ∈ (0, 1).

This characterization gives various examples of functions from S class. See
properties of these classes in [15].

We need the following simple estimate for proofs of theorems 1-3, (see [6]):
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Let s > 1, w ∈ S then∫ 1

0

w(1− r)

(1− ρr)s
dr ≤ Cw(1− ρ)

(1− ρ)s−1
, ρ ∈ (0, 1),

(this condition will be used in proofs of 1◦ ⇒ 2◦ in theorems 1 and 2).
Let T (r, f) be, as usual, Nevanlinna characteristic of analytic function f

T (r, f) =

∫
T

log+ |f(rξ)|dξ, r ∈ (0, 1).

Let us de�ne △k,s as a standard dyadic cube in the unit disk (see [8])

△k,s =

{
z ∈ D : 1− 1

2k
≤ |z| < 1− 1

2k+1
,
2πs

2k+1
≤ arg z <

2π(s+ 1)

2k+1

}
,

s = −2k+1, . . ., 2k+1 − 1, k = 0, 1, 2, . . ..
Let further |△k,s| be Lebegues measure of △k,s.
In the unit disk D, T = ∂D = {|z| = 1} the following sharp results were

provided recently in [6].

Theorem A. Let µ be �nite nonnegative Borel measure de�ned on sub-

sets of D. Let 1 ≤ p < ∞. Then the following are equivalent:

1.
∫
D(ln

+ |f(ξ)|)pdµ(ξ) ≤ c3
∫ 1

0 w(1− r)T p(r, f)dr < ∞,

2. µ(△l(θ)) ≤ c4w(l)l
p+1, θ ∈ [−π, π], l ∈ (0, 1),

△l(θ) = {z ∈ D : (1− l) < |z| < 1, |argz − θ| ≤ l

2
}.

Theorem B. Let µ be a �nite nonnegative Borel measure de�ned on

subset of D. Let 0 < p < 1, rk = 1− 1

2k
, k = 0, 1, 2, . . ., Then the following

are equivalent.

1.
∫
D(ln

+ |f(ξ)|)pdµ(ξ) ≤ c5
∫ 1

0 w(1− r)T p(r, f)dr < +∞.

2.
∑2k−1

s=−2k µ(△k,s)
1

1−p ≤ c6(1− rk)
1+p
1−p

(
w(1− rk)

1
1−p

)
.
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Various basic properties of Nevanlinna type spaces can be seen in [4]. Re-
sults of this paper can be extended partially to more general area Nevanlinna
type spaces studied in [9].

We use heavily some nice technique developed in [6] to extend the sharp
results.

We refer to [3] for similar type results concerning sharp embeddings in
area Nevanlinna type spaces in the unit disk. See also [15] for various new
embeddings in area Nevanlinna spaces in the unit disk.

2. Main results

The goal of this note to extend those sharp results in theorems A and B
using similar ideas to other values of parameters. Namely we obtained the
following sharp embedding theorems for area Nevanlinna type spaces in the
unit disk D.

Theorem 1. Let q ≤ p, p > 1. Let µ be positive Borel measure on D.

Then the following are equivalent:

1.
∫
D(log

+ |f(z)|)pdµ(z) ≤ c8
∫ 1

0 w(1− r)
(∫ π

−π log
+ |f(rξ)|dξ

)q
dr.

2. µ(△l) ≤ c7w(l)
p
q l

p
q+p.

Note obviously for q = p we obtain immediately Theorem A.
The following result is another sharp extension of Theorem A.

Theorem 2. Let q ≤ 1 and let µ be positive Borel measure on D. Then

the following conditions are equivalent:

1.
∫
D log+ |f(z)|dµ(z) ≤ c9

∫ 1

0 w(1− r)
(∫ π

−π log
+ |f(rξ)|dξ

)q
dr.

2. µ(△l) ≤ c10w(l)
1
q l

1
q+1.

The following sharp result is a direct extension of Theorem B.
We have the following result.

Theorem 3. Let µ be positive Borel measure on D. Let q ≤ p, p < 1.
Then the following conditions are equivalent:∫

D

(
log+ |f(z)|

)p
dµ(z) ≤ C2

∫ 1

0

(∫
T

log+ |f(rξ)|dξ
)q

w(1− r)dr. (1)
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 2k−1∑
s=−2k

µ(△k,s)
1

1−p

1−p

≤ C1w(1− rk)
p
q (1− rk)

(q+1)p
q (2)

Remark 1. Note (2) type condition, namely 2◦ from Theorem B, with
p = q is also su�cient for embedding of the type∫

D
(log+ |f(z)|)p̃dµ(z) ≤ C

∫ 1

0

(∫
T

log+ |f(rξ)|dξ
)q

w(1− r)dr

where q ≤ 1, p̃ > 1, q ≤ p̃. This can be seen from our proof.

Remark 2. Similar sharp theorems with very similar proof can be ob-
tained if we replace the right side in Theorem 1 and Theorem 2 by spaces
with quasi norms

∑
k≥0

(∫ 1−2−(k+1)

1−2k
w(1− r)

(∫
T

log+ |f(rξ)|dξ
)q

dr

)s

,

∫ 1

0

(∫
|z|≤r

log+ |f(w)|(1− |w|)αdm2(w)

)q

w(1− r)dr,

(readers can easily recover such theorems based on our proofs below) for
0 < s ≤ 1, α > −1, 0 < q < ∞, where dm2 is a Lebesgues measure in D,
where w is a weight from a S function class, (see [6] for these weights) with
some additional restrictions on parameters.
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